Author Affiliations
Abstract
School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
Precise and stable synchronization between an optical frequency comb (femtosecond mode-locked laser oscillator or microresonator-based comb) and a microwave oscillator is important for various fields including telecommunication, radio astronomy, metrology, and ultrafast X-ray and electron science. Timing detection and synchronization using electro-optic sampling with an interferometer has been actively used for low-noise microwave generation, long-distance timing transfer, comb stabilization, time-of-flight sensing, and laser-microwave synchronization for ultrafast science facilities. Despite its outstanding performance, there has been a discrepancy in synchronization performance of more than 10 dB between the projected shot-noise-limited noise floor and the measured residual noise floor. In this work, we demonstrate the shot-noise-limited performance of an electro-optic timing detector-based comb-microwave synchronization, which enabled an unprecedented residual phase noise floor of -174.5 dBc/Hz at 8 GHz carrier frequency (i.e., 53 zs/Hz1/2 timing noise floor), integrated rms timing jitter of 88 as (1 Hz to 1 MHz), rms timing drift of 319 as over 12 h, and frequency instability of 3.6×10-20 over 10,000 s averaging time. We identified that bandpass filtering of the microwave signal and optical pulse repetition-rate multiplication are critical for achieving this performance.
Photonics Research
2022, 10(2): 02000365
Author Affiliations
Abstract
1 School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
2 Department of Energy Systems Research & Department of Physics, Ajou University, Suwon 16499, South Korea
3 e-mail: diyeom@ajou.ac.kr
We investigate optical and electrical behaviors of a graphene saturable absorber (SA) and mode-locking performance of a graphene-SA-based mode-locked Er fiber laser in gamma-ray radiation. When irradiated up to 4.8 kGy at 100 Gy/hr dose rate, the overall nonlinear transmittance in transverse electric mode was increased, while maintaining modulation depth to >10%. The corresponding polarization-dependent loss was reduced at a 1.2-dB/kGy rate. In the electrical properties, the charge carrier mobility was reduced, and the Dirac voltage shift was increased to positive under gamma-ray radiation. The radiation-induced optical and electrical changes turned out to be almost recovered after a few days. In addition, we confirmed that the graphene-SA-based laser showed stable CW mode-locking operation while the inserted graphene SA was irradiated for 2-kGy at a 45-Gy/hr dose rate, which corresponds to >40 years of operation in low Earth orbit satellites. To the best of our knowledge, this is the first evaluation of graphene SAs and graphene-SA-based mode-locked lasers in gamma-ray radiation, and the measured results confirm the high potential of graphene SAs and graphene-SA-based lasers in various outer-space environments as well as other radiation environments, including particle accelerators and radiation-based medical instruments.
Photonics Research
2019, 7(7): 07000742
Author Affiliations
Abstract
1 School of Mechanical and Aerospace Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
2 Key Laboratory of Radar Imaging and Microwave Photonics, Ministry of Education, Nanjing University of Aeronautics and Astronautics (NUAA), Nanjing 210016, China
3 e-mail: pans@nuaa.edu.cn
We propose and demonstrate an agile X-band signal synthesizer with ultralow phase noise based on all-fiber-photonic techniques for radar applications. It shows phase noise of ?145 dBc/Hz (?152 dBc/Hz) at 10 kHz (100 kHz) offset frequency for 10 GHz carrier frequency with integrated RMS timing jitter between 7.6 and 9.1 fs (integration bandwidth: 10 Hz–10 MHz) for frequencies from 9 to 11 GHz. Its frequency switching time is evaluated to be 135 ns with a 135 pHz frequency tuning resolution. In addition, the X-band linear-frequency-modulated signal generated by the proposed synthesizer shows a good pulse compression ratio approximating the theoretical value. In addition to the ultrastable X-band signals, the proposed synthesizer can also provide 0–1 GHz ultralow-jitter clocks for analog-to-digital converters (ADC) and digital-to-analog converters (DAC) in radar systems and ultralow-jitter optical pulse trains for photonic ADC in photonic radar systems. The proposed X-band synthesizer shows great performance in phase stability, switching speed, and modulation capability with robustness and potential low cost, which is enabled by an all-fiber-photonics platform and can be a compelling technology suitable for future X-band radars.
Mode-locked lasers Microwaves Radar Fiber optics Ultrafast technology 
Photonics Research
2018, 6(1): 01000012

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!